package com.aps.common.core.utils.uuid;
import com.aps.common.core.enums.SystemClock;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Component;
import java.lang.management.ManagementFactory;
import java.net.InetAddress;
import java.net.NetworkInterface;
import java.util.Enumeration;
import java.util.concurrent.ThreadLocalRandom;
import java.util.regex.Pattern;
/**
* 基于Twitter的Snowflake算法实现分布式高效有序ID生产黑科技(sequence)——升级版Snowflake
*
*
* SnowFlake的结构如下(每部分用-分开):
*
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
*
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0
*
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
* 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下START_TIME属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69
*
* 10位的数据机器位,可以部署在1024个节点,包括5位dataCenterId和5位workerId
*
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号
*
*
* 加起来刚好64位,为一个Long型。
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
*
*
* 特性: * 1.支持自定义允许时间回拨的范围
* 2.解决跨毫秒起始值每次为0开始的情况(避免末尾必定为偶数,而不便于取余使用问题)
* 3.解决高并发场景中获取时间戳性能问题
* 4.支撑根据IP末尾数据作为workerId * 5.时间回拨方案思考:1024个节点中分配10个点作为时间回拨序号(连续10次时间回拨的概率较小) *
* 常见问题: * 1.时间回拨问题 * 2.机器id的分配和回收问题 * 3.机器id的上限问题 * * @author lry * @version 3.0 */ @Component public class Sequence { private static final Logger log = LoggerFactory.getLogger(Sequence.class); /** * 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动) */ private final long twepoch = 1519740777809L; /** * 5位的机房id */ private final long datacenterIdBits = 5L; /** * 5位的机器id */ private final long workerIdBits = 5L; /** * 每毫秒内产生的id数: 2的12次方个 */ private final long sequenceBits = 12L; protected final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); protected final long maxWorkerId = -1L ^ (-1L << workerIdBits); private final long workerIdShift = sequenceBits; private final long datacenterIdShift = sequenceBits + workerIdBits; /** * 时间戳左移动位 */ private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; private final long sequenceMask = -1L ^ (-1L << sequenceBits); /** * 所属机房id */ private final long datacenterId; /** * 所属机器id */ private final long workerId; /** * 并发控制序列 */ private long sequence = 0L; /** * 上次生产 ID 时间戳 */ private long lastTimestamp = -1L; private static volatile InetAddress LOCAL_ADDRESS = null; private static final Pattern IP_PATTERN = Pattern.compile("\\d{1,3}(\\.\\d{1,3}){3,5}$"); public Sequence() { this.datacenterId = getDatacenterId(); this.workerId = getMaxWorkerId(datacenterId); } /** * 有参构造器 * * @param workerId 工作机器 ID * @param datacenterId 序列号 */ public Sequence(long workerId, long datacenterId) { if (workerId > maxWorkerId || workerId < 0) { throw new IllegalArgumentException(String.format("Worker Id can't be greater than %d or less than 0", maxWorkerId)); } if (datacenterId > maxDatacenterId || datacenterId < 0) { throw new IllegalArgumentException(String.format("Datacenter Id can't be greater than %d or less than 0", maxDatacenterId)); } this.workerId = workerId; this.datacenterId = datacenterId; } /** * 基于网卡MAC地址计算余数作为数据中心 *
* 可自定扩展 */ protected long getDatacenterId() { long id = 0L; try { NetworkInterface network = NetworkInterface.getByInetAddress(getLocalAddress()); if (null == network) { id = 1L; } else { byte[] mac = network.getHardwareAddress(); if (null != mac) { id = ((0x000000FF & (long) mac[mac.length - 2]) | (0x0000FF00 & (((long) mac[mac.length - 1]) << 8))) >> 6; id = id % (maxDatacenterId + 1); } } } catch (Exception e) { log.warn(" getDatacenterId: " + e.getMessage()); } return id; } /** * 基于 MAC + PID 的 hashcode 获取16个低位 *
* 可自定扩展
*/
protected long getMaxWorkerId(long datacenterId) {
StringBuilder mpId = new StringBuilder();
mpId.append(datacenterId);
String name = ManagementFactory.getRuntimeMXBean().getName();
if (name != null && name.length() > 0) {
// GET jvmPid
mpId.append(name.split("@")[0]);
}
// MAC + PID 的 hashcode 获取16个低位
return (mpId.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
}
/**
* 获取下一个 ID
*
* @return next id
*/
public synchronized long nextId() {
long timestamp = timeGen();
// 闰秒
if (timestamp < lastTimestamp) {
long offset = lastTimestamp - timestamp;
if (offset <= 5) {
try {
// 休眠双倍差值后重新获取,再次校验
wait(offset << 1);
timestamp = timeGen();
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", offset));
}
} catch (Exception e) {
throw new RuntimeException(e);
}
} else {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", offset));
}
}
if (lastTimestamp == timestamp) {
// 相同毫秒内,序列号自增
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
// 同一毫秒的序列数已经达到最大
timestamp = tilNextMillis(lastTimestamp);
}
} else {
// 不同毫秒内,序列号置为 1 - 3 随机数
sequence = ThreadLocalRandom.current().nextLong(1, 3);
}
lastTimestamp = timestamp;
// 时间戳部分 | 数据中心部分 | 机器标识部分 | 序列号部分
return ((timestamp - twepoch) << timestampLeftShift)
| (datacenterId << datacenterIdShift)
| (workerId << workerIdShift)
| sequence;
}
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
protected long timeGen() {
return SystemClock.INSTANCE.currentTimeMillis();
}
/**
* Find first valid IP from local network card
*
* @return first valid local IP
*/
public static InetAddress getLocalAddress() {
if (LOCAL_ADDRESS != null) {
return LOCAL_ADDRESS;
}
LOCAL_ADDRESS = getLocalAddress0();
return LOCAL_ADDRESS;
}
private static InetAddress getLocalAddress0() {
InetAddress localAddress = null;
try {
localAddress = InetAddress.getLocalHost();
if (isValidAddress(localAddress)) {
return localAddress;
}
} catch (Throwable e) {
log.warn("Failed to retrieving ip address, " + e.getMessage(), e);
}
try {
Enumeration